Journal of Organometallic Chemistry, 417 (1991) 355–362 Elsevier Sequoia S.A., Lausanne JOM 21914

A ¹³C, ¹⁷O, ²⁹Si NMR study of some silicon, germanium and tin acyloxyderivatives

I. Zicmane, E. Liepiņš, L.M. Ignatovich and E. Lukevics Institute of Organic Synthesis, Latvian Academy of Sciences, Riga, Latvia (USSR) (Received March 6th, 1991)

Abstract

 13 C, 17 O, 29 Si, 119 Sn NMR spectra of acyloxysilanes, -germanes and -stannanes $R^1R^2R^3MOCOR$ (M = Si, Ge, Sn) have been investigated. The character of substituent effects on the 13 C and 17 O chemical shifts of these compounds is almost the same for Si, Ge and Sn. 17 O and 119 Sn NMR spectra establish the predominance of the intermolecular exchange processes in acyloxystannanes.

Introduction

Quite an extensive bibliography on the application of ¹³C, ²⁹Si and ¹¹⁹Sn NMR for the study of silicon (1-7) and (1-7) and (1-7) application of ¹⁷O NMR are scarce mulated. However, works describing the application of ¹⁷O NMR are scarce [4,7,3,4,5]. In constrast to the analogous silicon and in composinds acyloxygetmanes have not been studied extensively. The present work is a part of our detailed multinuclear NMR studies of group 14 element organic derivatives, containing M-O bond (M = Si, Ge, Sn) and deals with the ¹³C, ¹⁷O and ²⁹Si NMR investigation of acyloxysilanes, -germanes and -stannanes R¹R²R³MOCOR, where M = Si, Ge, Sn; R¹R²R³ = Me₃, Et₃, MePh₂; R = Me, Ph, ¹Bu, Pr, CH_nCl_{3-n} (n = 0-2), CF₃.

Experimental

NMR spectra were recorded for solutions in CDCl₃ at 303 K on a Bruker WM 360 spectrometer. Experimental conditions were as follows: ¹³C NMR at 22.63 MHz (spectrometer Bruker WH-90/DS), complete proton decoupling, pulse width 5 μ s, chemical shifts (CS) measured with accuracy ± 0.07 ppm relative to internal TMS. ¹⁷O NMR: 48.82 MHz, pulse width 40 μ s, CS measured with accuracy ± 0.3 ppm relative to external H₂O. ²⁹Si NMR: 71.55 MHz, complete proton decoupling, pulse width 15 μ s, CS were measured with accuracy ± 0.03 ppm relative to internal TMS. ¹¹⁹Sn NMR: 134.29 MHz, complete proton decoupling, pulse width 11 μ s, CS were measured with accuracy ± 0.03 ppm relative to external tetramethyltin.

General procedure for the synthesis of compounds

Acyloxysilanes were obtained by dehydrocondensation of triorganylsilanes with carboxylic acids in the presence of hexachloroplatinic acid [22]. This method can be successfully applied for the synthesis of trialkylacyloxygermanes as well. Earlier it has been shown [23] that strong carboxylic acids such as trifluoroacetic acid reacted easily with triethylgermane under reflux giving the corresponding ester, while the reaction with weaker acetic acid was very slow. We have found that boiling of triethylgermane with aliphatic and aromatic acids in the presence of Speier's eatalyst for 2–8 h afforded the corresponding acyloxygermanes in 58–83% yield:

$$Et_{3}GeH + RCOOH \xrightarrow{H_{3}P(C_{1}, \circ H_{2}O)} Et_{3}GeOCR + H_{2}$$

$$(\mathbf{R} = \mathbf{Me}, \mathbf{Pr}, \mathbf{Ph}, \mathbf{CH}_2\mathbf{Cl}, \mathbf{CHCl}_2, \mathbf{CCl}_3, \mathbf{CF}_3)$$

Physico-chemical characteristics of prepared acyloxygermanes and -silanes correspond to those given in literature [24,25]. Acyloxystannanes have been obtained in the reaction of trialkylchlorostannanes with salts of the corresponding acids.

Results and discussion

²⁹Si chemical shifts (CS) of α -substituted triethylacyloxysilanes vary within a range of 10 ppm (Table 1). The enhancement of the acceptor properties of the substituent R causes a downfield shift of the ²⁹Si resonance signal. A linear correlation between ²⁹Si CS and Taft constant (σ^*) of substituent R [26] has been found:

$$\delta^{29} \text{Si} = 25.0 + 3.5\sigma^{\star} \qquad r = 0.995; \ n = 6 \tag{1}$$

A linear correlation between ²⁹Si CS and pK_a of the corresponding acid RCOOH was observed earlier for trimethylacyloxysilanes Me₃SiOCOR [1]. This holds also for triethylacyloxysilanes Et₃SiOCOR:

$$\delta^{29}$$
Si = 35.5 - 2.1 pK_n r = 0.996; n = 5 (2)

The eqs 1 and 2 suggest that both physical characteristics—acidity and CS—are controlled by the same factors.

¹³C CS for carbonyl carbons vary within a range of 16 ppm in the compounds studied. This range of changes is comparable to that for esters and acyloxystannanes possessing similar substituents.

We have compared carbonyl ¹³C CS in the silicon, germanium and tin isostructural compounds R'_3MOCOR , M = Si, Ge, Sn (Fig. 1).

The increase in ¹³C(C=O) CS values in the order M = Si < Ge < Sn suggest the following increase in the same order: ionic character of the M–O bond and contribution of ionic structures of the RCOO MR'_{3}^{+} type.

The ¹⁷O NMR spectra of acyloxysilanes and -germanes display two well resolved ¹⁷O resonance signals (Table 1): one lies within the range 150–176 ppm and corresponds to etheral oxygen, the other signal is situated within the range 330–376 ppm and corresponds to carbonyl oxygen.

We have compared ¹⁷O CS in the isostructural acyloxyderivatives R'_3MOCOR and MeOCOR, M = Si, Ge (Figs. 2 and 3). The effect of the substituent R on the CS of both oxygens is approximately the same for M = Si. Ge, but differs to some

	-
	11-11
	ł
	6
1	
Table	

N=0
οM ⁵
¹ R ² R
es R
man'
-gei
and
anes
xysil
cylo
for a
Hz)
7 (
ړ۷ک
pm),
8 (p
lata
1R d
ZZ

70	R	$R^{1}R^{2}R^{3}$	X)=))(,	(c)	-0-)0,	÷	δ ^{2γ} Si	8 ¹³ C (RN	;	8 ¹³ C	δ ¹³ C (R)	
				8	$\Delta \nu_{1/2}$	Δ	$\Delta \nu_{1/2}$		C-1	C-2	(C=0)	C-1	C-2
	Me	Me3	Si	379.0	320	177.4	110	23.1	0.02	I	172.37	23.09	
5	Me	MePh ₂ ^a	Si	383.8	310	174.2	260	11.6	- 1.25	1	171.78	22.96	ι
~	Me	Et ₃	Si	376.5	300	167.2	200	25.0	5.02	6.71	171.97	22.80	I
4	Me	Et,	g	360.8	370	176.2	250	I	8.00	8.24	174.71	22.37	I
2	Pr	Et 3	Ge	346.4	420	173.3	360	I	8.07	8.30	178.32	29.22	27.44 ^b
ý	'Bu	Et,	Si	363.5	300	152.6	230	24.4	5.08	6.77	179.51	40.15	27.64
2	Рh	Et,	Si	354.6	450	150.0	350	26.3	5.20	6.92	166.91	132.32	130.73 °
~	Ph	Et_3	g	334.1	500	161.5	470	ł	8.27	8.53	170.13	130.16	130.69 ^d
<u>т</u>	CH,CI	Et.	Si	372.3	480	159.7	210	29.1	4.92	6.61	167.95	42.52	ł
0	CH ₂ CI	Et,	Ge	353.1	380	168.6	260	I	7.98	8.46	170.52	42.58	I
_	CHC1 ₂	Et.	Ge	341.5	450	163.5	280	I	7.88	8.59	167.89	66.89	I
2	cci	Et,	S	356.4	340	145.3	280	34.4	4.69	6.51	161.55	91.78	I
e	cci,	Et ₃	Ge	333.9	500	155.9	320	I	7.85	8.76	164.60	92.17	I
4	CF,	Et]	Si	367.6	250	150.1	150	34.3	4.63	6.06	157.30	115.53	I
Ś	CF_3	Et_3	ğ	346.5	270	158.7	250	I	7.47	8.38	159.65	115.24	ł

ł

1

.

ł

Fig. 1. The relation between carbonyl ¹³C CS in acyloxysilanes, -germanes and -stannanes.

extent from that in substituted methyl acetates [27]. It should be noted that our data and those of previous workers were obtained in different solvents and this could have affected the absolute CS values (¹⁷O NMR spectra were recorded as follows: for Et₃SiOCOR and Et₃GeOCOR in CDCl₃; for Me₃SiOCOR in a neat liquid [7], for MeOCOR in acetonitrile [27]). We did not find any satisfactory correlations between ¹⁷O CS and substituent R constants.

The characteristic feature of acyloxystannane ¹⁷O NMR spectra is the presence of only one signal, which is located approximately in the middle of the positions of carboxyl group ¹⁷O signals in analogous silicon and germanium compounds (Table 2). The existence of only one signal for both oxygens reflects their equivalence on the NMR time scale resulting from fast exchange processes in solution. According to [14,17] it is due to intramolecular exchange of SnR₃ groups between two oxygen atoms.

The comparison of differences between ¹⁷O CS for both oxygen atoms in isostructural compounds with the same set of substituents gives the following values: $\Delta = \delta({}^{17}O(CO)) - \delta({}^{17}O(-O-)) = 216-222 \text{ ppm for } \text{RCO}_{2}\text{CH}_{3}$ [27], 200-217

Fig. 2. The relation between carbonyl oxygen ¹⁷O CS in acyloxyderivatives of carbon, silicon and germanium.

ppm for acyloxysilanes and 173-188 ppm for acyloxygermanes. It can be assumed that Δ value indicates the tendency of carboxyl group oxygens to equivalence, and, to some extent the rate of exchange processes in the solution. In such case the latter increases in order $M = C < Si < Ge \ll Sn$. Our results agree with those previously reported [28], where activation energy for 1,3-oxygen to oxygen rearrangement in benzoates PhCOOR were determined by means of ¹³C NMR and the following sequence for the changes of this energy was obtained:

$$\mathbf{R} = \mathbf{CH}_{2}\mathbf{P}\mathbf{h} \gg \mathbf{SiMe}_{3} \approx \mathbf{SiMe}_{2}^{2}\mathbf{B}\mathbf{u} > \mathbf{GeMe}_{3} > \mathbf{SnBu}_{3}$$

Exchange processes in solutions of tin derivatives being faster than in those of silicon and germanium analogues was also shown by the study of ¹¹⁹Sn CS for some acyloxystannanes {Table 2}. Only one signal has been observed in ¹¹⁹Sn NMR spectra for the mixture of two in derivatives—trimethyltin acetate Me₃SnOCOMe and -cinnamate Me₃SnOCOCH=CHPh—in CDCl₃ (Fig. 4), confirming fast intermolecular exchange (on the NMR time scale) in solution:

$$R = R'' = C - O - SnR'_{3} + O = C - O - SnR'_{3}$$

$$R'' = C - O - SnR'_{3}$$

$$R'' = R'' =$$

Fig. 3. The relation between etheral oxygen 17 O CS in acyloxyderivatives of carbon, silicon and germanium,

Multiple dilution of the sample by deuterochloroform reduces the rate of this exchange. As a result two ¹¹⁹Sn signals, one corresponding to each acyloxystannane, can be observed at very low concentrations.

The study of the effect of the solvent on ¹⁷O and ¹¹⁹Sn CS of acyloxystannanes and -germanes also confirms the predominance of intermolecular exchange between carboxyl groups in solution (Tab. 3). The ¹¹⁹Sn resonance signal is shifted to higher

Table 2 ¹⁷O and ¹¹⁹Sn NMR data δ (ppm). $\Delta \nu_{1/2}$ (Hz) for tin carboxylates R'₃SnOCOR.

	R′	R	¹⁷ O	ta ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o a	δ^{119} Sn	
			δ	$\Delta \nu_{1\times 2}$		
1	Me	Me	275.2	200	129.37	
2	Me	CH=CHPh	263.0	750	124.75	
3	Et	CH=CHPh	254.6	850	106.90	

Table 3

Effect of solvent on the NMR parameters of tin and germanium carboxylates

Compound	Solvent	δ^{17} O (ppm)	δ ¹¹⁹ Sn (ppm)
Me ₂ SnOCOMe	CDCl ₃	275.4	130.2
5	CDCl ₃ : pyridine		
	10:1		58.9
	5:1	283.0	9.0
	pyridine	286.0	-15.8
Et ,GeOCOCF,	CDCl ₃	346.5 (CO)	-
5 5	5	158.7 (-O-)	_
	CD ₂ CN	360.9 (CO)	_
	ç	176.7 (-O-)	<u> </u>
	pyridine	276.8	-

fields with increase of the amount of pyridine in the $CDCl_3$ solution. This corresponds to the increase of tin coordination number due to the complexation with pyridine. At the same time the equivalence of both oxygen atoms originates. Dissolving of trifluoroacetoxygermane in pyridine results in the coalescence of oxygen signals. This ascertains also the possibility of intermolecular exchange processes in germanium derivatives. The addition of another carboxylate or complexing agent (e.g. pyridine) shifts the equilibrium of this exchange. If the intramolecular exchange dominates, extraneous influences on the exchange equilibrium should be less pronounced.

Acknowledgement

We are grateful to Mrs. S. Stirna for the synthesis of triethylacyloxysilanes.

References

- 1 W. McFarlane and J.M. Seaby, J. Chem. Soc., Perkin Trans. II, (1972) 1561.
- J. Schraml, J. Pola, V. Chvalovský, M. Mägi and E. Lippmaa, J. Organomet. Chem., 49 (1973) C19.
 E. Lippmaa, M. Mägi, G. Engelhardt, H. Jancke, V. Chvalovský and J. Schraml, Collect. Czech.
- Chem. Commun., 39 (1974) 1041.
 4 J. Schraml, Nguyen-Duc-Chuy, P. Novak, V. Chvalovský, M. Mägi and E. Lippmaa, Collect. Czech. Chem. Commun., 43 (1978) 3202.
- 5 J. Schraml, V. Chvalovský, M. Mägi and E. Lippmaa, Collect. Czech. Chem. Commun., 44 (1979) 854.
- V.A. Pestunovich, M.F. Larin, A.I. Albanov, L.P. Ignatyeva and M.G. Voronkov, Dokl. Akad. Nauk SSSR, 247 (1979) 393.
- 7 A. Lyčka, J. Holeček, K. Handliř, J. Pola and V. Chvalovský, Collect. Czech. Chem. Commun., 51 (1986) 2582.
- 8 W. McFarlane and R.J. Wood, J. Organomet. Chem., 40 (1972) C17.
- 9 W.D. Honnick and J.J. Zuckerman, J. Organomet. Chem., 178 (1979) 133.
- 10 J. Holeček, M. Nádvornik, K. Handliř and A. Lyčka, J. Organomet. Chem., 241 (1983) 177.
- 11 J. Holeček, K. Handliř, M. Nádvorník and A. Lyčka, J. Organomet, Chem., 258 (1983) 147.
- 12 M. Nádvorník, J. Holeček, K. Handlíř and A. Lyčka, J. Organomet, Chem., 275 (1984) 43.
- 13 A. Lyčka, M. Nádvornik, K. Handliř and J. Holeček, Collect. Czech. Chem. Commun., 49 (1984) 2903.
- 14 A. Lyčka and J. Holeček, J. Organomet. Chem., 294 (1985) 179.
- 15 J. Holeček, M. Nádvornik, K. Handliř and A. Lyčka, J. Organomet. Chem., 315 (1986) 299.
- 16 A. Lyčka, J. Jirman, A. Koloničny and J. Holeček, J. Organomet. Chem., 333 (1987) 305.
- 17 J. Holeček, K. Handliř, A. Lyčka, T.K. Chattopadhyay, B. Majee and A. K. Kumar. Collect. Czech. Chem. Commun., 51 (1986) 1100.
- 18 K.C. Molloy, S.J. Blunden and R. Hill, J. Chem. Soc., Dalton Trans., (1988) 1259.
- 19 J. Holeček, K. Handliř, M. Nádvornik, S.M. Teleb and A. Lyčka, J. Organomet. Chem., 339 (1988) 61.
- 20 H.K. Sharma, Sneh Iata, K.K. Sharma, K.C. Molloy and P.C. Waterfield, J. Organomet. Chem., 353 (1988) 9.
- 21 J. Holeček, K. Handliř, M. Nádvornik and A. Lyčka, Z. Chem., (1990), 265.
- 22 E. Lukevics, Izv. Akad. Nauk LatvSSR, Ser. Khim., (1963) 111.
- 23 H.H. Anderson, J. Amer. Chem. Soc., 79 (1957) 326.
- 24 V. Bažant, V. Chvalovský and J. Rathousky (Eds.), Organosilicon Compounds, Vol. 1-10, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1965–1983.
- 25 M. Lesbre, P. Mazerolles and J. Satgé, The Organic Compounds of Germanium, Interscience, London, 1971.
- 26 C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.
- 27 D.W. Boykin, T.S. Subramanian and A.L. Baumstark, Spectrochim. Acta A, 45 (1989) 335.
- 28 D.J. Young and M.J.T. Robinson, Tetrahedron Lett., 28 (1987) 3631.